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Proton-proton pair distribution in dense fluid hydrogen

Stefan Nagel, Ronald Redmer, and Gerd Ro¨pke
Fachbereich Physik, Universita¨t Rostock, Universita¨tsplatz 3, D-18051 Rostock, Germany

Michael Knaup and Christian Toepffer
Institut für Theoretische Physik, Universita¨t Erlangen, Staudtstraße 7, D-91058 Erlangen, Germany
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Recent experiments on hydrogen at very high pressures have stimulated new quantum statistical studies of
this simplest Coulomb system since a transition from nonconducting to metallic behavior occurs at Mbar
pressures which is forced by drastic changes of the electronic and structural properties in the molecular system
with increasing density. The variation of the thermodynamic and structural properties as a function of the
density and temperature can be studied within molecular dynamics and Monte Carlo simulations as well as
within analytical approaches such as integral equation techniques. In the region where hydrogen molecules still
dominate the physical behavior, the proton-proton pair distribution function is determined both from a modi-
fied hypernetted chain approximation which starts with effective intermolecular and interatomic potentials in
the neutral system, and a wave-packet molecular dynamics simulation with the Coulomb interaction between
protons and electrons as the basic interaction. Comparison of both complementary approaches gives hints for
the validity region of the chemical picture as well as for the accuracy of computer simulations.
@S1063-651X~98!13505-5#

PACS number~s!: 05.70.Ce, 52.25.Kn, 62.90.1k, 64.30.1t
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I. INTRODUCTION

The study of matter at high densities is of fundamen
interest for a better understanding of the equation of s
~EOS! and related phenomena such as phase transiti
Drastic changes of the electronic properties such as me
zation may occur together with a strong variation of t
structure with the density. For instance, metallization of flu
hydrogen has been verified experimentally at 140 G
around a relatively low temperature of 3000 K using multip
shocks @1#. Dissociation of hydrogen molecules has be
found to be important already at these conditions@2,3#.

Laser driven shock wave experiments have been
formed using both direct and indirect illumination of sol
targets@4#. Single shock experiments have compressed liq
deuterium up to pressures of 250 GPa and temperature
about 303103 K @5#. The corresponding equation of sta
follows estimates of Ross@2# within a dissociation model
but disagrees with rather approximate results such as
SESAME tables above 25 GPa@31#.

For a better understanding of matter at high pressures,
necessary to elaborate a quantum statistical approach u
densities where, e.g., the above-mentioned metalliza
transition occurs in hydrogen. This can be done for stron
coupled plasmas using, e.g., the Green function method@6#.
There, perturbation theory is used to evaluate the equatio
state. For practical applications, interpolation formulas c
be given which are valid for a large domain of the densi
temperature plane@7#. However, only approximate result
are available for the region of strong coupling where
interparticle potential energy is larger than the typical kine
energy, i.e.,

G5
e2

4p«0akBT
>1. ~1!
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The Wigner-Seitz radiusa is related to the densityn of the
system by

a5~3/4pn!1/3, ~2!

so that distances can be scaled in terms of the Bohr ra
aB50.529310210 m via r s5a/aB . Furthermore, the degen
eracy parameter

Q5kBT/EF ~3!

can be introduced whereEF5\2(3p2n)2/3/2m is the Fermi
energy andm the electron mass. Strongly degenerate syste
Q<1 at weak couplingG<1 can be handled by the Vlaso
equation for fermions@8#. In the strong coupling regimeG
>1, classical molecular dynamics~MD! computer simula-
tions can account for all sorts of correlations@9#. However,
the wave nature of the electrons has to be taken into acc
in addition.

In this paper we want to discuss a quantum regime w
Q50.01420.034 at moderately strong couplingG532
279. The protons and electrons become strongly correla
through the Coulomb interactions and bound atomic and m
lecular states are formed. We will focus our attention on
proton-proton pair distribution functiongpp(r ) which gives
the probability to find two protons at a distancer . Quite
generally, the pressurep of a system at given temperatur
and density, i.e., the EOS, can be calculated from the in
particle potentials and the pair distribution functions@10#. If,
however, the latter are extracted from numerical data
tained in simulations, the unavoidable statistical fluctuatio
yield rather unprecise results for the pressure. Fortunat
there exists a fundamental method for obtaining the in
energy which is independent from any assumptions on
chemical composition (H,H2,...) or the physical structure
~neutral or ionized, metallic or dielectric, etc.! of the system.
5572 © 1998 The American Physical Society
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57 5573PROTON-PROTON PAIR DISTRIBUTION IN DENSE . . .
For many-particle systems with Coulomb interaction, t
virial theorem is strictly valid and yields the EOS directly v
p5 (n/3) (K1E) @11#. Here K and E are the kinetic and
total energy, respectively, andn is the number density.

In the regime considered here, most electrons are bo
in molecular states. This calls for a quantum mechanical
scription of coupled electron-ion systems, e.g., the pa
integral Monte Carlo method~PIMC! @12# or ionic MD on
electronic Born-Oppenheimer surfaces@13,14#. These pow-
erful techniques allow detailed calculations, which areab
initio in the sense that the true Coulomb interaction is e
ployed. On the other hand they involve compromises res
ing mainly from exchange, e.g., the nodes of the den
matrix have been taken from a noninteracting system in R
@12#. This is certainly doubtful in the molecular phase. Mor
over they are numerically very expensive so that typica
only samples with 32 electrons can be treated at presen

Here, we employ an efficient quantum mechanical sim
lation scheme, the wave-packet molecular dynam
~WPMD! @15#. The technical simplifications of this metho
permit much larger samples, e.g., 2048 electrons in
work. This allows a more detailed study of structures on
larger scale. The WPMD was developed for simulations
dense two-component plasmas where quantum effects p
crucial role to guarantee the stability of the system@16,17#. It
is intended as an extension of classical MD with just
necessary effort to include the essential quantum effects.
simplifications consist in describing each electronic wa
function by a Gaussian wave packet, whose position, m
mentum, and complex width are the free dynamical para
eters. The time-dependent variational principle leads t
pseudo-Hamiltonian propagation. As a further approxim
tion, antisymmetrization is expanded into a hierarchy of
changes, which is cut at the level of pairwise exchange. T
approximation is justified for temperatures down to one-te
of the Fermi temperature if the electrons are delocalized
holds for even lower temperatures if the electrons are lo
ized in molecular orbits. However, the numerical accuracy
this method has to be checked in the low-density limit. O
aim is to compare both analytical and numerical approac
considering regions where these models are applicable.

II. WAVE-PACKET MOLECULAR DYNAMICS
SIMULATIONS

The WPMD was originally used by Heller for a descri
tion of the scattering of composite particles like simple
oms and molecules@15#; later it was also applied to heav
ion reactions@18#. In the present application to a Coulom
system of electrons and protons, we characterize the sta
the system by the set$RI(t),PI(t),C(xi ,t)% of classical co-
ordinatesRI(t) and momentaPI(t) for the protons and quan
tum mechanical wave functionC(xi ,t) for the electrons.
The dynamics of the system is governed by the class
equations of motion

ṘI~ t !5]PI
^CuĤuC&, ṖI~ t !52]RI

^CuĤuC& ~4!

for the protons and the principle of stationary action
e
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t1

t2
dt^Cu i ] tuC&5dE

t1

t2
dt^CuĤuC& ~5!

for the electrons. The HamiltonianĤ contains a classica
part, consisting of a Hamilton function for the kinetic ener
of the ions and their mutual Coulomb interactions, and
quantum mechanical operator for the kinetic energy of
electrons, their mutual interactions, and their interactio
with the ions. In order to make the system of equations~4!
and ~5! tractable, the electron wave functionC is param-
etrized as a set of Gaussian wave packets, i.e.,

C~x1 ,...,xN ,t !5ÂS )
i 51

N

w i~xi ,t !D , ~6!

with

wq~x!5S 3

2pb D 3/4

expF2S 3

4b
1 ipbD ~x2r !22 ip•~x2r !G .

~7!

Here, q5$qn%5(pb ,b,p,r ) is a set of variational param
eters. Whilep andr are the classically conjugate paramete
for the position of the wave packet,pb and b describe the
evolution of its width. The antisymmetrization operator
denoted byÂ.

With the ansatz~6! and ~7!, the dynamics of the electron
wave function is reduced to a pseudoclassical Hamilton
dynamics for the parametersq. Application of the variational
principle ~5! to the parametrized wave functions~6! yields

(
m

Nnmq̇m5]qn
^CuĤuC&, ~8!

which differs from the conventional Hamiltonian equatio
by the occurrence of the norm overlap

Nnm5 i ^Cu]qn
Q ]qm
W2]qm

Q ]qn
W uC&. ~9!

It is one of the advantages of the Gaussian ansatz~7! that the
norm overlap takes the classical symplectic form

Nnm5S 0 1

21 0D ~10!

if the antisymmetrization in Eq.~6! is neglected, i.e., in the
Hartree limit. The solution of Eq.~8! requires the inversion
of the norm overlap at every time step. In order to limit t
numerical expense, the antisymmetrization is restricted
two-particle exchanges which give a correctiondN to the
norm. The correction to the inverse is also calculated up
the second order in the exchanges. This approximatio
justified for the treatment of delocalized electron states
temperatures down to about one-tenth of the Fermi temp
ture TF . It holds at even lower temperatures for localiz
states as they are realized, e.g., in molecular hydrogen.

Of course computer simulations, while beingab initio in
spirit involve certain simplifying prejudices in practice. I
the WPMD, antisymmetrization is limited to pairwise e
change while assumptions about the nodes of the den
matrix must be made in the PIMC method. In the chemi
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picture, on the other hand, it is a difficult task to account
the change of the properties of the constituents due to
surrounding medium. In fact the usual strategy of kine
theory, namely, expansion of the equations of motion i
subdynamics involving 2,3,. . . ,N-particle correlations, may
not be very successful in plasma applications because o
infinite range of the Coulomb force.

III. DISSOCIATION MODEL

An alternative approach to study the behavior of hydrog
at low to medium pressures is given by the chemical pictu
Hydrogen is considered as a mixture consisting of H2 mol-
ecules, H atoms, and possibly of protons and electro
These components interact via effective potentials. Furth
more, chemical reactions such as dissociation and ioniza
are possible so that the composition of the system is given
the chemical equilibrium. As is well known, this simp
chemical picture breaks down at high densities. Modifi
tions of the constituents and their interactions can be tre
in a systematic way using the technique of Green functi
@6#. We will restrict our considerations to the region whe
these medium modifications are small. Furthermore, we c
sider low temperatures so that thermal ionization can be
glected. In general, we have then to allow only for the pr
sure dissociation of hydrogen molecules into atoms via
chemical equilibrium H2
H1H.

Within such a dissociation model, we take dense fl
hydrogen to be a mixture of molecules and atoms with c
responding partial densitiesnH2

andnH , respectively, and a

dissociation degreeb5nH /(nH12nH2
). The molecules and

atoms interact via effective two-body potentials which a
proximate the effects of the real many-body interactio
These interactions are given by empirical expressions wh
in principle, can be derived from atomic quantum calcu
tions. Ross, Ree, and Young@19# use data from single shoc
experiments up to pressures of 10 GPa to model such
effective two-body potential between hydrogen molecul
They propose both a highly accurate 15-parameter pote
and a more approximate three-parameter~exponential-six!
potential of the form

VH2H2
~r !5

«

a26 H 6 expFaS 12
r

r * D G2aS r *

r D 6J ,

~11!

where«/kB536.4 K, a511.1, andr * 56.482aB . In order
to avoid unphysical behavior in the limit of short distanc
r→0, we replace the potential by an exponential function
r ,2.95aB , the inflection point, with parameters set to e
sure continuity of the potential~11!.

Unfortunately, no similar experimental results exist to
the other interaction potentialsVHH(r ) and VHH2

(r ). Ree
@20# has suggested a potential of the form~11! also for the
interaction between hydrogen atoms,VHH(r ), with the pa-
rameters«/kB520.0 K, a513.0, andr * 52.646aB . This
potential yields a minimum energy for close-packed mo
atomic hydrogen solid near 2.4 cm3/mol H2, in very good
agreement with results from the local density approximat
@21#. The parameters for the atom-molecule poten
r
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VHH2
(r ) are derived from the Berthelot mixing rule whic

gives«/kB527.0 K, a512.0, andr * 54.565aB .
The fractionb of dissociated molecules is determined

the correlation contributions to the chemical potential a
cording to

nH2
5

nH
2LH

3

&
s int exp@~2D01mH2

cor22mH
cor!/kBT#,

s int5
kBT

hcBF12expS 2
hcv

kBT D G21

. ~12!

D0524.735 eV is the dissociation energy of isolated2
molecules andLH

2 52p\2/(mHkBT) the thermal wavelength
of H atoms.s int denotes the internal partition function o
vibrational and rotational states withB560.853 cm21 and
v54401 cm21 as the characteristic rotational and vibr
tional constants of the H2 molecule@22#; c is the speed of
light. These parameters are, in principle, also density dep
dent.

We have calculated the correlation parts of the chem
potentials viamcor5(]Fcor/]N)T . The correlation parts of
the free energy are derived using fluid variational theo
~FVT! of Ross, Ree, and Young@19# for the pure molecular
and atomic system using the pair potentials~11!; for details,
see@3#. There we have shown that FVT gives results for t
equation of state of hydrogen which agree with those
tained within the modified hypernetted chain~MHNC! ap-
proximation and classical Monte Carlo~MC! simulations up
to the metallization pressure of 140 GPa. The correlat
contributions in Eq.~12! are not negligible for the chemica
equilibrium at high pressures.

In the present chemical picture we can define three p
distribution functionsgH2H2

, gH2H , and gHH . They can be
derived using computer simulation techniques or analyt
methods. In the MHNC scheme@23#, the Ornstein-Zernike
equation for a two-component system with species$a,b%
5$H,H2%

hab~r !5cab~r !1(
n

nnE can~ ur2r 8u!hnb~r 8!d3r 8,

~13!

has to be solved together with the closure relation for the p
distribution functions,

gab
MHNC~r !5expFhab~r !2cab~r !2

Vab~r !

kBT
1Bab

HS~r !G .
~14!

hab(r )5gab(r )21 is the total correlation function,cab(r )
the direct correlation function, andBHS the bridge function
of the hard-sphere reference system.

Classical MC simulations have been performed for
mixture of hydrogen molecules and atoms with dissociat
degreeb @3#, and three different pair distribution function
gHH , gHH2

, andgH2H2
are derived using the respective pa

potentials~11!. For low temperatures and densities, the d
sociation degree is small. For instance, at temperature oT
52000 K and amass density of%50.33 g/cm3, we have
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found a dissociation degree of 0.07%. Therefore the mole
lar pair distribution function is clearly dominant.

In order to extract the proton-proton pair distributio
function gpp from the molecule-molecule, molecule-atom
and atom-atom distribution functions, we need to determ
the proton distribution in the H2 molecule. For isolated mol
ecules in the singlet state, this distribution is very w
known from the Kolos-Wolniewicz solution of the Schro¨-
dinger equation@24#. For a first qualitative evaluation, w
neglect in-medium corrections to the molecular structure
Eq. ~12! such as the vibron shift@25,26# or a variation of the
binding length of 1.401aB . The vibrational and rotationa
spectrum of the H2 molecule is then derived by standa
techniques. The probability of finding a proton at a distan
r from another proton in the H2 molecule at a temperatureT
is given by the eigenfunctionsf i and eigenvaluesEi for the
singlet potential via

wpp
H2~r !5

(
i

uf i~r !u2 exp~2Ei /kBT!

(
i

exp~2Ei /kBT!

. ~15!

The ground and first excited state have been taken into
count for the evaluation of Eq.~15! which is sufficient for
the low temperatures considered here.

Recalling that the total number of protons is given
np5nH12nH2

, the explicit proton-proton distribution func
tion is given by four terms representing the possible case
finding a neighboring proton:

gpp~r !5
2nH2

np
2 wpp

H2~r !1
nH

2

np
2 gHH~r !

1
4nHnH2

np
2 E d3swpp

H2~s!gHH2
~r2s/2!

1
4nH2

2

np
2 E d3s1E d3s2wpp

H2~s1!wpp
H2~s2!

3gH2H2
~r2s1/22s2/2!. ~16!

The first term describes the internal proton-proton distri
tion in the H2 molecule and the second one the proton-pro
distribution for the H-H interaction. The third term repr
sents the H-H2 distribution, and the fourth one the H2-H2
contribution. The convolution integrals in Eq.~16! are evalu-
ated in Fourier space.

IV. RESULTS FOR THE PROTON-PROTON PAIR
DISTRIBUTION FUNCTION

We have evaluated the proton-proton pair distribut
function using the methods described in Secs. II and III
different values of temperature and density. First, we disc
the low-density low-temperature region where the disso
tion model is well founded.

In Fig. 1, results are shown forT52000 K and a mass
density of %50.33 g cm23 which corresponds to a proto
number density ofnp5231023 cm23. For these conditions
u-

e

l

n

e

c-

of

-
n

r
ss
-

the degree of dissociation calculated within the dissociat
model is 0.07%. The proton-proton pair distribution functi
shows a strong first peak at the bond length of the H2 mol-
ecule at 1.4aB . The second, broader peak around 4.3aB is
due to the next-neighbor molecules. The contributions of
other partial pair distribution functionsgHH andgHH2

to gpp

according to Eq.~16! are small in correspondence to the lo
degree of dissociation. The sharp minimum around 2aB can
be considered as an indication for the molecular structure
hydrogen under these conditions. The integrated prot
proton pair distribution function shows that the first pe
contains one proton which is just the bond partner in the2
molecule.

The data points in Fig. 1 are the results of WPMD sim
lations. The correlation function was calculated for each p
ticle in the simulation box. The error bars were obtain
from averaging over all particles, their length represent
the mean error of the mean value. The WPMD yields bot
more pronounced intramolecular correlation, as well a
sharper intermolecular structure than the dissociation mo

Results at the same mass density%50.33 g cm23 but at a
higher temperature ofT55000 K are shown in Fig. 2. There
the dissociation degree amounts already to 5.9%. The di
ciated H atoms contribute to the flattening of the minimu
near 2aB in comparison to Fig. 1. The same behavior is a
obtained from the WPMD simulation. Furthermore, we co
pare in Fig. 2 with results of PIMC@27,28# and tight-binding
molecular dynamics~TBMD! simulations @29,30# for the
same conditions. Compared with the WPMD simulation,
proton-proton pair distribution function derived from PIM
simulations is sharper peaked. The maximum of the fi
peak occurs at a smaller value than the proton-proton
tance in the isolated H2 molecule. On the other hand, th
proton-proton pair distribution function derived from th
TBMD simulation is less structured than the WPMD resu
At larger distances, a good agreement with the distribut
function resulting from the dissociation model can be stat

Comparing the dissociation model and the WPMD sim

FIG. 1. Proton-proton pair distribution function atT52000 K
and %50.33 g/cm3. The WPMD result~data points! is compared
with the dissociation model~full line!. The dashed~WPMD! and
thin line ~dissociation model! indicate the respective coordinatio
numbers calculated asN54pn*g(r )r 2dr.
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lations, we conclude that the agreement between both tr
ments is satisfactory in the low-density low-temperature
gion. At lower temperatures, the WPMD simulation yiel
somewhat stronger structures in the correlation function
a larger next-neighbor distance than the dissociation mo
This may be attributed to the increasing contribution of e
cited states in the dissociation model according to Eq.~15!
which are modified due to density effects.

PIMC simulation data are at present available only
temperaturesT>5000 K@27,28#. At that lowest temperature
they yield a more pronounced structure in the pair distri
tion function and a shift towards smaller bond lengths.
should be noted in this context that this PIMC simulati
involves a high-temperature approximation insofar as
nodes of the density matrix are taken from free particles. O

FIG. 2. Proton-proton pair distribution function atT55000 K
and %50.33 g/cm3. We compare the present WPMD result~data
points! and the dissociation model~full line! with the PIMC simu-
lations of Magroet al. @28# ~dotted line! and the TBMD results of
Lenoskyet al. @30# ~dashed line!.
tt.

h-
ev

.
R.
ys
at-
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el.
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r
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t

e
e

may expect that this assumption becomes progressi
questionable if the temperature is lowered into a reg
where bound molecules dominate as considered here. Th
fore an extension of that method to lower temperatu
would be highly desirable.

We also note that the PIMC simulations are presently c
ried out with 32 electrons whereas the WPMD simulation
performed with 2048 electrons corresponding to a cube w
fourfold edge length. A larger set of particles is essentia
low temperatures where long-range and long-time corre
tions are built up. AtT5300 K andr s51.78, for example,
the correlation functions obtained from the WPMD@16#
agree quite well with those from a Car-Parrinello calculati
@13# in a smaller simulation cube of the latter, but show
however, beyond that size another peak around 7.5aB in the
proton-proton pair distribution function which is due to th
correlations of next-nearest neighbors. It is expected th
better coincidence of both simulation methods is achie
systematically with increasing temperatures.

V. CONCLUSIONS

The proton-proton pair distribution function is an impo
tant quantity to describe properties of dense hydrogen flu
and plasma. Comparing with the WPMD simulations, w
conclude that the dissociation model yields relevant res
up to mass densities of about 1 g cm23, depending also on
temperature. At higher densities, the dissociation model
to be improved by including further medium effects as w
as ionization.

On the other hand, the dissociation model yields a be
mark for the simulations such as WPMD, PIMC, or TBM
in the low-density low-temperature limit. The different re
sults obtained up to now from the various simulation me
ods for the proton-proton pair distribution function in th
regime are a challenge to improve the numerical accur
and to increase the number of particles to get a better e
mate of the quantum effects inherent in the system.
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